
FlowFence: A Denial of Service Defense System
for Software Defined Networking

Andrés Felipe Murillo Piedrahita and Sandra Rueda
Systems and Computing Engineering Department

School of Engineering
Universidad de los Andes, Colombia

Email: {af.murillo225, sarueda}@uniandes.edu.co

Diogo M. F. Mattos and Otto Carlos M. B. Duarte
Grupo de Teleinformatica e Automação

Universidade Federal do Rio de Janeiro (UFRJ)
Rio de Janeiro, Brazil

Email: {menezes, otto}@gta.ufrj.br

Abstract—Most Denial of Service (DoS) attacks intend to
generate a traffic pattern that is indistinguishable from legitimate
traffic, making it hard to detect an attack. Conventional defenses
for these attacks are not scalable, are slow to react or introduce
an overhead to each routed packet. In this paper, we present
FlowFence, a lightweight and fast denial of service detection
and mitigation system for Software Defined Networking (SDN).
The FlowFence architecture includes routers running daemons
to monitor the average occupation of their interfaces to detect
congestion conditions, and an SDN controller that coordinates
bandwidth assignment of controlled links. The controller limits
the flow transmission rate along a path to prevent users’ star-
vation. The mitigation procedure of starvation state allocates an
average bandwidth, while flows exceeding the mean are penalized.
The penalization is proportional to the difference between the fair
limit and the current bandwidth usage. A system prototype was
implemented and evaluated in the Future Internet Testbed with
Security (FITS). The results show that the proposal avoids users’
starvation of network resources without adding much overhead
in the network.

I. INTRODUCTION

Denial of Service (DoS) attacks are the most important
Internet threat. During the last years, large scale DoS attacks
have been presenting a growing pattern in their volumes,
reaching 100 Gb/s in 2010 and 400 Gb/s in 2014 [1]. These
volumes can compromise the main Internet links, routers,
and services. They may also cause interruptions of multiple
services, including critical infrastructures, like Smart Grids [2],
with huge financial damages. A DoS attack becomes successful
when malicious users intentionally consume enough resources
that deprives the resources of a target victim, which are aimed
at providing services to the legitimate users. Sophisticated
attacks mimic legitimate traffic, making them difficult to
detect and to prevent. Distributed Denial of Service (DDoS)
attacks use geographically distributed machines to strength
the attack, achieving a very high concentration of requests at
the destination victim, as well as in the last communication
links close to such destination. The geographical distribution
of attackers hides their location.

Source-based DoS detection is close to the attacker, but
it is not a trivial task in a DDoS, because the number of
requests generated by every attacking machine may be very
low. Destination-based DoS detection uses mechanisms to
detect and to block traffic at the destination. Nevertheless,

the use of defenses at the destination does not avoid network
resource consumption. The hybrid DoS detection combines
close to the destination detection and mechanisms to block
traffic at network routers. In this way, it is possible to reduce
the concentration of false requests at the victim and to control
network resource consumption [3]. The hybrid mechanisms,
however, work in a distributed way, which could be slow for
critical applications, or could require additional headers in the
network packets, degrading network performance.

In this paper, we propose FlowFence, a congestion avoid-
ance mechanism system for mitigating denial of service on
Software Defined Networking (SDN). Software Defined Net-
working employs a logically centralized controller that knows
the global network view, monitors the current status of a
network, and configures the switches to process, to forward,
and to discard packets [4]. FlowFence applies a simple band-
width control to mitigate DoS impact without requiring the
complexity of additional headers in network packets. The
FlowFence architecture is composed of network routers and an
SDN controller that monitors the usage level of their interfaces.
When a congestion state is detected, the router notifies the
controller and the controller sends commands back to routers to
limit bandwidth usage on the congested interfaces. Flows with
bandwidth consumption higher than a fair usage are penalized
through the application of a reduction that is proportional to
the difference between current and fair usages. A prototype
of FlowFence was implemented in the Future Internet Testbed
with Security (FITS) [5]. The prototype was evaluated and the
results show that FlowFence avoids starvation of legitimate
users in presence of denial of service attacks with high volume
of flooding packets.

The rest of paper is organized as follows. Section II
presents the related work. Section III present the FlowFence
design, while Section IV describes FlowFence architecture and
implementation details. The experiments and results of the
FlowFence evaluation are presented in Section V. Section VI
concludes the paper.

II. RELATED WORK

Yan and Yu argue that, although Software Defined Net-
working is a target of DDoS by itself, the logically centralized
control of the SDN brings new possibilities to defeat DDoS,
especially in cloud computing environments [6]. Software
Defined Networking technology can be helpful to develop978–1–4673–7707–2/15/$31.00 c© 2015 IEEE

improved security mechanisms, because it can dynamically and
automatically reconfigure the network when particular security
anomalies are detected. Moreover, using SDN a reconfigura-
tion may be triggered based not only on single events but
also on a global state vision of the network, which increases
effectiveness.

Avoiding address spoofing is an important step against DoS
attacks. Kwon et al. propose the BGP-based Anti-Spoofing
Extension (BASE) that is a mechanism for avoiding address
spoofing on Software Defined Networking [7]. The main idea
of BASE is to mark packets with an identification of its path. If
the packet has a mark that is not in accordance with its address,
the packet is recognized as spoofed address. The marking
values are distributed through BGP. BASE takes advantage of
the logically centralized control of SDN to process marking
values that identifies paths in a SDN Autonomous System.
FlowFence, on the other hand, does not focus on identifying
who is the DoS attacker on the network and intends to be
much more simple and not mark packets.

Silva et al. [8] propose a Software Defined Networking
(SDN) architecture, using Pyretic1 and Resonance2, that per-
forms network reconfigurations in the presence of DoS attacks
and intrusion attempts. The system uses Pyretic to detect
events at SDN controllers and to activate policies to respond
against these events. In the case of DoS attacks, a simple
threshold was established to trigger the policy. FlowFence uses
a similar approach as it trigger the congestion event when it
detects congested output interfaces, but FlowFence applies a
progressively stronger bandwidth control over the flows instead
of dropping all the packets in a single step.

Lim et al. [9] propose an SDN scheme for blocking DoS
attacks that rely on botnets and do not spoof IP addresses.
The scheme includes a Blocking Application running on top
of an SDN controller and a set of protected servers that com-
municate with the controller through secure communication
channels. Each server monitors traffic and notifies the Blocking
Application when it detects a DoS attack. The application
handles a pool of IP public addresses and assigns a new IP
address to the server that notified the condition. The controller
provides arriving clients with the new address of the server
as the address for the service, and the controller also tears
down old connections. The new IP should be provided to
clients imposing a high computational barrier for bots, like
CAPTCHAs. The switches in the network use SDN redirection
functions to migrate connections to the new address. Clients
that continuously try to connect to the old address are marked
as bots and their packets are dropped.

Bedi et al. [10] propose a DoS mitigation mechanism
based on active queue management that provides fair usage to
legitimate flows and drops all packets from malicious flows.
The mechanism uses Deterministic Fair Sharing (DFS) to
assign each flow a share of the router buffer; a share is
calculated based on current buffer capacity, number of active
flows and queue length. Also, the mechanism uses a marking
probability (Pm) to identify malicious flows; this probability

1Pyretic is a framework for defining high level policies in SDN -
http://www.frenetic-lang.org/pyretic/

2Resonance is a security-driven controller that implements Pyretic
http://resonance.noise.gatech.edu/

increases as a flow behaves more unfairly. Flows marked as
malicious have all their packets dropped. Bit-rate statistics
are maintained at the entrance interfaces of the router and
marked flows are unmarked as malicious as they return to
use a fair share of the buffer capacity. The main idea of
FlowFence is simplicity and it does not force the routers to
perform processing operations on each incoming packet to
avoids processing overhead.

AVANT Guard [11] presents two extensions to the SDN
architecture to improve resiliency: Connection Migration and
Actuating Triggers. Connection Migration is a protection
mechanism against SYN Flood attacks; the mechanism proxies
TCP SYN requests and uses SYN cookies to classify legiti-
mate SYN requests, only legitimate requests are authorized
and migrated to the real target. Additionally, AVANT Guard
introduces Actuating Triggers; a trigger is an event that may
happen and may be detected at the data plane, such as an
exceeding rate of SYN requests to a server. When an event is
detected within the data plane statistics it may trigger an event
to the controller or insert a flow rule into a specified flow table
to mitigate the attack. AVANT GUARD is designed to protect
the SDN itself.

Braga et al. propose an Intrusion Detection System as an
SDN application [12]. The IDS is based on Self Organizing
Maps (SOM); it receives information from the controller and
uses the SOM to identify flows belonging to a DDoS. The IDS
presents the best results using the following four flow metrics:
mean of packets per flow, mean of bytes per flow, mean of
flow duration, and percentage of paired flows. IDS based on
classifiers are sensitive to training data sets and, thus, they may
not identify unknown attack types.

NetFence [13] is a closed loop congestion control ar-
chitecture that mitigates DoS impact. In this architecture,
routers detect congestion in their output interfaces and send
authenticated feedback information to the routers that are close
to the congestion source to reduce the DoS impact. To safely
exchange this information, the authors propose an extra layer
between the IP and TCP layers [14]. FlowFence bases on
two ideas of their work: setting a threshold of fair bandwidth
usage as a classifying metric and applying bandwidth control
to mitigate DoS impact. Nevertheless, FlowFence uses the
SDN paradigm, hence, it does not need to modify the TCP/IP
stack as NetFence proposes. Additionally, FlowFence does not
require feedback information for every packet, neither the use
of a cryptographic hash for every packet. A header with a
cryptographic hash increases the processing time.

Mattos and Duarte propose XenFlow [15], [16], a mech-
anism to guarantee QoS in virtual networks. The mechanism
runs on top of the Xen hypervisor and OpenFlow, and it im-
plements network resource control using queue management.
First, each virtual machine must define its QoS parameters.
Afterwards, an application on the hypervisor reads these pa-
rameters and associates them to a set of queues, as a way
to guarantee the minimum amount of resources requested by
each virtual machine. If the physical machine has available
resources after the initial resource assignment, the remaining
resources are distributed proportionally to the defined QoS
parameters. Although XenFlow and FlowFence have different
goals, FlowFence uses queue management, as proposed by
XenFlow to control bandwidth assignment.

III. THE FLOWFENCE DESIGN AND ARCHITECTURE

A. Attacker Model

A network flow can affect performance of other flow
intentionally or not, due to malicious usage or unexpected
network traffic. We classify a malicious behavior when users
perform activities that interrupt or degrade the performance of
other flows on the network. For unexpected network traffic, we
denote every flashcrowd, or similar behavior, that may congest
the network suddenly. Both behaviors are harmful and cause a
denial of service. Therefore, for sake of simplicity, we define
all the flows that perform such behaviors as attacking flows.
Attacking flows are launched by attackers that may deploy one
of the following behaviors.

1) Flood-Based Attacks: The attacker can generate flood-
based DoS attacks that try to exhaust bandwidth resources
nearby the victim and forwarding capacities of the routers.
The model does not consider DoS attacks that exploit vulner-
abilities, like TCP-SYN DoS attacks, and other vulnerability-
based attacks. It is also assumed that the attacker does not
compromise the SDN controller or routers.

2) Malicious Traffic Mimicking Legitimate Traffic: It is
assumed that the attacker can launch floods with traffic that
is indistinguishable from legitimate traffic; for this reason it is
not possible to differentiate legitimate from malicious traffic.

B. FlowFence Objectives

FlowFlace aims to avoid starvation of legitimate users, even
under a high volume non-differentiable traffic. As a second
goal of FlowFence, we design a simple and responsive system
that uses unmodified protocol stack. Hence, FlowFence must
not require a modification in the traditional TCP/IP protocol
stack used in TCP/IP networks. This type of modification
would greatly impact applicability of a proposal. At last,
another main goal is to fast respond against any congestion
condition that is verified on the network.

C. The FlowFence Defense Procedure

Figure 1. The FlowFence defense procedure: 1) Routers detect congestion at
their output interfaces; 2) notify the SDN controller; 3) the controller makes
decisions; and 4) sends commands back to the routers to control bandwidth
usage.

The FlowFence architecture is based on OpenFlow routers
using POX SDN controller. The routers monitor their output

interfaces to detect congestion conditions and notify to the
controller. The controller receives congestion notifications and
flows statistics, and sends commands to the congested routers
to control bandwidth usage of their flows. Thus, when a
router notifies about a congested interface, the SDN controller
sends commands to the notifying router, as well as to all
routers forming the forwarding packet path to that router, to
control bandwidth assignment for all flows using the congested
interface. Figure 1 presents the FlowFence procedure. When
no congestion condition exists, FlowFence only monitors the
flows that are traversing the network. Bandwidth is granted
based on flow behavior. If the flow transmitted bit-rate is
less than an estimated fair share, then the flow is classified
as a well-behaved flow and receives bandwidth equal to its
estimated transmitted bit-rate. In this paper a fair share, for
simplicity, is defined as the ratio between the link capacity and
the number of flows using that link. If the flow transmitted bit-
rate is higher than a fair share threshold, then the flow receives
a fair share minus a penalization that is calculated based on
the difference between fair usage and its current usage rate.
Finally, remaining bandwidth is equally shared between well
behaved flows.

Figure 2. Time sequence of FlowFence messages to control bandwidth usage
of congested interfaces.

Figure 2 shows the message exchange between an SDN
router and the controller to perform bandwidth control. All
the messages travel over a secure channel, as the OpenFlow
protocol specifies. In FlowFence, a Denial of Service condition
is detected if the interface average-usage rate is higher than
80% [13]. To estimate the current interface usage, routers pe-
riodically capture samples of transmitted bytes per second and
apply a sliding exponential window to estimate the interface
average occupation. The use of an exponential sliding window
avoids false-positive alarms.

The SDN controller keeps secure connections with the
routers using the control plane interfaces. If a router detects
a congestion condition, it sends a message to the controller.
The notification message includes the interface capacity, the
name, i.e., a unique identifier, and the type of the message,
in this case, type is set to notification. Upon receiving
a notification message, the controller checks the network
topology, and requests statistics from every router that for-
wards flows passing through the congested link. The logically
centralized SDN paradigm enables this operation and also
allows the controller to rapidly react and communicate with
every router somehow participating in the congestion. The key

idea is to perform an end-to-end congestion control, avoiding
unnecessary link usage. The routers reply sending their flow
statistics to the controller. These statistics include source and
destination IP addresses, flow length, and flow duration.

After receiving flow statistics from a router owning a
congested interface, the controller classifies the flows. To fast
respond to this situation, we simply protect flows that use less
bandwidth than a fair share of the capacity of the interface,
and we assume as badly behaved flows and penalize those
flows that use more bandwidth than a fair share. Therefore, if
bwi > Ct/n, then flowi is badly behaved, where bwi stands
for the bandwidth of flowi, Ct is the capacity of the link
and n is number of flows sharing the link. Therefore, the
fair share strategy benefits low bandwidth flows, which cause
low impact on the network and have short duration. A more
detailed classification requires an Intrusion Detection System
(IDS), which would increase FlowFence complexity and is
considered out of the scope of this proposal.

Once flows have been classified, the controller sends to
the router a command to create one queue for each classified
flow, and assigns independent bandwidths to each queue,
as bandwidth control is applied through queues. Bandwidth
assigned to each queue depends on whether the associated flow
was classified as well behaved. Well-behaved flows receive
bandwidth according to:

bwi = bwri + (bwextra/ngood), (1)

where bwri is the bandwidth used by the flowi, bwextra

is the remaining bandwidth after assigning bandwidth to all
the flows, and ngood is the total number of well-behaved
flows. The FlowFence implementation assigns bandwidth as
follows. First, it assigns bandwidth to well behaved flows.
Second, it assigns bandwidth to flows classified as badly
behaved, which are penalized proportionally to their excess.
Finally, it distributes remaining bandwidth among all the well-
behaved flows. Flows classified as badly behaved flows receive
bandwidth according to:

bwi = bwr/nbad − (1− e(Ct/n)−bwri) ∗ α ∗ bwri, (2)

where bwri is the bandwidth used by the flowi, bwr is the
remaining bandwidth after granting bandwidth to well behaved
flows, nbad is the number of badly behaved flows identified
at the router, Ct is the total interface capacity, n is the total
number of flows, and α is a constant that the administrator
set to determine the penalty aggressiveness. If α is equal to
0, then no penalty is applied and badly behaved flows will
receive a fair share of the remaining bandwidth. If α is equal
to 1, then the maximum exponential penalization is applied to
badly behaved flows. The penalization was designed to apply
a bigger control in offending flows whose bandwidth greatly
exceeds the fair share usage.

IV. THE FLOWFENCE PROTOTYPE

The FlowFence prototype was implemented as a POX ap-
plication in the SDN controller and a Python application in the

forwarding devices. POX is an SDN controller3 that supports
OpenFlow version 1.0. The routers run the Open vSwitch4 as
a software for switching and routing. Open vSwitch supports
the OpenFlow protocol and provides mechanisms for queue
management and bandwidth control. The FlowFence Python
application monitors interface usage, handles communication
with the SDN controller, and applies bandwidth control.

All the experiments were performed in the Future Internet
Testbed with Security (FITS), and controlled with the MAGI
framework. FITS is an inter-university testbed developed by
Brazilian and European universities [5]. FITS is a testbed
based on the Xen hypervisor and on the OpenFlow switch-
ing. OpenFlow and Open vSwitch handle communication
between the virtual machines. Prototype implementation and
experimentation in a virtual environment take into account
message processing and transferring delays, providing realistic
results. Besides, we use the MAGI framework, developed by
DeterLab [17], to create a highly controllable and replicable
experiments in testbed environments.

In MAGI, each experiment follows a script, in which nodes
run specific software, called agents. The script is used to
synchronize the commands and events exchanged between the
nodes participating in the experiment.

In the FlowFence experiments, each node was implemented
as a virtual machine, and two physical machines hosted the vir-
tual machines. In addition, legitimate clients run MAGI agents
written to execute the Iperf5 and Httperf6 tools. Attackers run
the MAGI Flooder agent, originally developed by DeterLab7.

V. EXPERIMENTS AND RESULTS

Figure 3 describes the topology used for the experiments.
A dumbbell topology was selected because it is the worst-
case scenario for the DoS defense provided by FlowFence, as
legitimate and malicious clients are competing for the shared
link to the server [18]. We assigned a capacity of 50 Mb/s
to the shared link. The experiments use virtual machines to
run clients, servers, routers, and the SDN controller. Two
physical servers host the virtual machines and were connected
using Gigabit Ethernet links. Each server is equipped with
two Intel(R) Xeon(R) CPU X5690 3.47 GHz and 48 GB of
RAM, and runs Debian Linux 3.2.0-4-amd64. The first server
hosts the attacker nodes and the second one hosts the SDN
routers, the controller, the legitimate client, and the server.
Virtual machines were configured with a virtual CPU using
one core, 256 MB of RAM, and running Debian Linux 3.2.0-
4-amd64.

Three sets of experiments were performed. The first ex-
periment measures the bandwidths received by a legitimate
client during a flood attack, with and without the FlowFence
defense, as a way of validating the prototype. The second
experiment follows recommendations previously presented to
test DoS defenses [18]; rather than using simple tests to

3POX is an open source SDN controller implemented in Python. Available
at http://www.noxrepo.org/pox/about-pox/.

4Open vSwitch is a multilayer virtual switch. Available at
http://www.openvswitch.org/

5http://sourceforge.net/projects/iperf/.
6http://www.hpl.hp.com/research/linux/httperf/.
7http://montage.deterlab.net/magi/.

Figure 3. Dumbbell topology used in the experiments. All the participating
nodes are virtual machines running on top of Xen Hypervisor. The legitimate
user executes Iperf and Httperf tools and the attackers run the MAGI Flooder
Agent.

Figure 4. Results of the Iperf experiment. Using FlowFence a legitimate
client receives more bandwidth than it would receive if FlowFence were not
used. Under a total flooding of 450 Mbits/s, the legitimate client does not
starve.

measure dropped packets or bandwidth, we used Httperf to
measure the reply time for a client when requesting HTTP
content under a DoS attack. This experiment evaluates the
effectiveness of FlowFence in mitigating DoS flood attacks.
The third experiment measures FlowFence reaction time.

All experiments were run for 60 seconds. DoS flood attack
lasts during all the time. The legitimate client starts sending
requests 30 seconds after the beginning of the experiment.
Each attacker was configured to flood the link with a load
of 50 Mb/s. The experiment scenario scales in number of
attackers, and for each scenario, we run three rounds.

In the first experiment, Iperf was used to measure the
bandwidth obtained by a legitimate client. The tool was con-
figured to run tests during 30 seconds and deliver reports every
second. Figure 4 presents the average bandwidth assigned to
a legitimate client in the experiment. The results show that a
legitimate client in an environment without FlowFence receives
less bandwidth than it would access if FlowFence were not
used. The performance of legitimate users degrades as the
number of attackers increases. With three attackers and a load
of 150 Mb/s, or more, a legitimate client ends up using a
very low share of the bandwidth. When FlowFence is active,
legitimate clients receive a larger share of bandwidth. The
bandwidth share is reduced as the number of attackers in-
creases, because they also receive a low amount of bandwidth.
Nevertheless, even with 9 attackers generating a total load
of 450Mb/s, which greatly exceeds the link capability, the
legitimate client gets an assured share of bandwidth.

Figure 5. Results of the Httperf experiment. Using FlowFence a legitimate
client requesting HTTP content receives a reply faster than it would happen if
FlowFence was not present. The reply time slightly increases as the number
of attackers and the volume of the DoS traffic increase.

It is noteworthy that this result is not the same as the
theoretical bandwidth that the client should receive according
to proposed sharing algorithm. It happens because the router
still has to enqueue the incoming messages from both legiti-
mate and malicious traffic. Also, it is important to note that
as FlowFence is a hybrid DoS defense it protects the network
elements and links, making it an effective defense against flood
attacks that go from simple UDP floods to more sophisticated
attacks, such as the Coremelt Attack [19].

In the second experiment, Httperf was used to measure
reply time for a legitimate client when it requests HTTP
content under a DoS attack. The size of the requested content
was of 1KB. The tool was configured to try 10 requests per
second and to perform a total of 100 requests. Figure 5 presents
the results of this experiment, the average reply time for the
100 requests, with and without FlowFence.

The results show that reply time is greater when no
defense is present, and reply time increases as the number
of attackers and the volume of flooding increase. When the
volume is 450 Mb/s, the time is approximately 40ms. It is
important to note that the HTTP content is very small. The
goal of this experiment is to measure the time that it takes
for a legitimate client to send a small request and receive
an answer over a very congested link. With FlowFence, the
time slightly increases, reaching around 15 ms, when the flood
load is 450 Mb/s. The low increment is explained because the
legitimate client receives a larger share of bandwidth and the
bandwidth control is applied in both routers in the topology.
Also, with FlowFence, no additional headers were needed. All
the notifications and commands are sent through the control
plane. All these messages are handled at the application layer
and travel using the traditional TCP/IP stack. This experiment
shows that FlowFence avoids starvation of legitimate clients
even under heavy DoS attacks.

The last experiment measures FlowFence response time.
Response time is relevant because if a defense takes too long
to detect and mitigate a lack of network resources, many
legitimate transactions may fail. This experiment deploys a
scenario in which 9 attackers, generating a 450Mb/s load, are
present. Using timers in the applications, the time required for
each step that FlowFence takes to detect and control the DoS
was measured. Table I shows the results of the test. Results
show that it takes 7 seconds, at all, for FlowFence to detect

and control the DoS attack. The activity that requires more
time is the DoS detection, which takes up to 4800 ms. It
happens because the router is sampling the output interface
occupation level per second. The sliding window has a width of
four samples to prevent false positives caused by small bursts
of legitimate traffic. It only takes 10 ms for the controller to
collect the router flow statistics. The time spent to calculate
the bandwidth is 30ms. These short periods of time show
that FlowFence does not impose a high computational load
in the controller, which could lead to scalability problems.
Additionally, the queue setup time takes 330 ms, this is caused
by the execution of several commands, in Open vSwitch, to
establish and assign bandwidth to each queue. Finally, it takes
1829 ms for the controlling actions to have effect on the
bandwidth assignment, and to be perceived by the legitimate
client. This is a reasonable time, as the routers still forward
all packets that are flooding the interface, before the defense
starts applying bandwidth controls.

Table I. TIME REQUIRED FOR EACH FLOWFENCE STEP TO DETECT
AND REACT TO A DOS FLOODING ATTACK.

Activity Required Time (ms)
DoS Detection 4800

Flow stats collection 10
Bandwidth calculation and queues command 30

Queue setup time 330
Flow redirection time 1

Bandwidth control effects 1829
Total time 7000

VI. CONCLUSION

In this paper, we propose the FlowFence, a congestion
avoidance system for denial of service mitigation on Software
Defined Networking. FlowFence identifies congestion condi-
tions by monitoring the usage of output interfaces at the net-
work routers. FlowFence fast reacts to a congestion scenario,
using bandwidth control over every flow that traverses the
congested interfaces. To keep FlowFence simple, it does not
require additional headers in the conventional TCP/IP stack
and it does not employ intrusion detection system to classify
malicious flows. The use of the SDN logically centralized
control allows identifying the flow path and discarding packets
close to their origin, avoiding the unnecessary use of net-
work bandwidth resource. The simple system quickly detect a
congestion scenario and mitigate the impact caused by badly
behaved flows. FlowFence penalizes with lower bandwidth
shares those flows that exceed a fair share of the resource;
the penalization is proportional to the difference between the
actually used bandwidth and the estimated fair bandwidth
usage. The results obtained through experiments with our
developed prototype show that FlowFence is simple, fast and
efficient, avoiding congestion scenarios with a low response
time. As a future work, we will consider larger experiment
topologies, and we will also port FlowFence application from
the POX to the Beacon controller, which outperforms POX.

ACKNOWLEDGMENTS

The authors would like to thank CNPq, CAPES, FAPERJ,
and Colciencias for their financial support.

REFERENCES

[1] Worldwide Infrastructure Security Report: 2014 Report, Arbor
Networks, Jan. 2015, accessed in July 2015. [Online]. Available:
http://www.arbornetworks.com/resources/infrastructure-security-report

[2] W. Wenye and L. Zhuo, “Cyber Security in the Smart Grid: Survey and
Challenges,” Comp. Net., vol. 57, no. 5, pp. 1344–1371, Apr. 2013.

[3] S. Zargar, J. Joshi, and D. Tipper, “A Survey of Defense Mechanisms
Against Distributed Denial of Service (DDoS) Flooding Attacks,” IEEE
Communications Surveys & Tutorials, vol. 15, no. 4, pp. 2046–2069,
2013.

[4] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan. 2015.

[5] I. M. Moraes, D. M. F. Mattos, L. H. G. Ferraz, M. E. M. Campista,
M. G. Rubinstein, L. H. M. Costa, M. D. de Amorim, P. B. Velloso,
O. C. M. B. Duarte, and G. Pujolle, “FITS: A Flexible Virtual Network
Testbed Architecture,” Computer Networks, vol. 63, pp. 221 – 237,
2014.

[6] Q. Yan and F. Yu, “Distributed denial of service attacks in software-
defined networking with cloud computing,” Communications Magazine,
IEEE, vol. 53, no. 4, pp. 52–59, Apr. 2015.

[7] J. Kwon, D. Seo, M. Kwon, H. Lee, A. Perrig, and H. Kim, “An
incrementally deployable anti-spoofing mechanism for software-defined
networks,” Computer Communications, vol. 64, pp. 1 – 20, 2015.

[8] J. Silva Delgado, D. Mendez Peñuela, L. Morales Medina, and
S. Rueda Rodriguez, “Automatic Network Reconfiguration Because
of Security Events,” in Proceedings IEEE Colombian Conference on
Communications and Computing 2014, Colombia, Jun. 2014, pp. 1–6.

[9] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang, “A SDN-oriented DDoS
Blocking Scheme for Botnet-based Attacks,” in 2014 Sixth International
Conference on Ubiquitous and Future Networks, China, Jul. 2014.

[10] H. Bedi, S. Roy, and S. Shiva, “Mitigating Congestion-based Denial of
Service Attacks with Active Queue Management,” in 2013 IEEE Global
Communications Conference, Atlanta, USA, Dec. 2013, pp. 1440–1445.

[11] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and Vigilant Switch Flow Management in Software-defined
Networks,” in The 2013 ACM SIGSAC Conference on Computer &
Communications Security, Germany, Nov. 2013, pp. 413–424.

[12] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS Flooding Attack
Detection Using NOX/OpenFlow,” in IEEE 35th Conference on Local
Computer Networks (LCN), Denver, USA, Oct. 2010, pp. 408–415.

[13] X. Liu, X. Yang, and Y. Xia, “NetFence: Preventing Internet Denial of
Service from Inside Out,” in Proceedings of the ACM SIGCOMM 2010
conference, New Delhi, India, Aug. 2010, pp. 255–266.

[14] X. Liu, X. Yang, D. Wetherall, and T. Anderson, “Efficient and Secure
Source Authentication with Packet Passports,” in II Conference on Steps
to Reducing Unwanted Traffic on the Internet, USA, Jul. 2006.

[15] D. M. F. Mattos and O. C. M. B. Duarte, “XenFlow: Seamless migration
primitive and quality of service for virtual networks,” in IEEE Global
Communications Conference (GLOBECOM 2014), Dec. 2014.

[16] D. M. F. Mattos, L. H. G. Ferraz, and O. C. M. B. Duarte, “Virtual
machine migration,” in Cloud Services, Networking and Management,
N. L. S. da Fonseca and R. Boutaba, Eds. Hoboken, EUA: Wiley-IEEE
Press, Apr. 2015.

[17] J. Mirkovic, T. Benzel, T. Faber, R. Braden, J. Wroclawski, and
S. Schwab, “The DETER Project: Advancing the Science of Cyber
Security Experimentation and Test,” in IEEE International Conference
on Technologies for Homeland Security (HST), 2010.

[18] J. Mirkovic, S. Fahmy, P. Reiher, and R. Thomas, “How to Test DoS
Defenses,” in Conference For Homeland Security, 2009. CATCH ’09.
Cybersecurity Applications Technology, Mar. 2009, pp. 103–117.

[19] A. Studer and A. Perrig, “The coremelt attack,” in Computer Security -
ESORICS 2009, M. Backes and P. Ning, Eds. Springer Berlin, 2009,
vol. 5789, pp. 37–52.

